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Angular distribution and intensity in molecular photoelectron spectroscopy

I. General theory for diatomic molecules

By A.D. BuckiNncHAM*, B. J. ORR} AND J. M. SicHEL]
Department of Theoretical Chemistry, The University, Bristol 8
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A theory of the angular distribution of photoelectrons ejected with a given energy from diatomic
molecules is presented. The differential cross-section o, is of the form

v &

0o = 8 [14 fPy(cos O)]

where 0, is the total cross-section, £ an anisotropy parameter and @ the angle between the polarization
vector of the incident light and the direction of the photoelectron. Expressions for o, and § in terms
of internal transition dipole moments are obtained for transitions between individual rotational states of
the molecule and ion, for either of Hund’s cases () or (). The formulae have been developed for
central-field bases for the eigenstates of the electron before and after ionization. When rotational structure
in the photoelectron spectrum is unresolved the angular distribution is independent of the choice of
Hund’s case.
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1. INTRODUCTION

Molecular photoelectron spectroscopy (Al-Joboury & Turner 1963) has become a source of
extensive data on molecular ionization potentials, orbital energies and Franck—Condon factors
in ionization (Turner 19684, b). Experiments on the angular distribution of photoelectrons
gjected from molecules (Berkowitz & Ehrhardt 1966; Berkowitz, Ehrhardt & Tekaat 1967)
suggest that the angular distribution may be useful as a source of information regarding the
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symmetry of the molecular orbital from which photoelectrons of a given energy are ejected.
This information would supplement that available from band shapes and Franck—Condon factors
(Al-Joboury & Turner 1963; Frost, McDowell & Vroom 1967). Also, Berry (1966) suggested
that a study of the angular distribution of photoelectrons might be useful in determining those
photon energies at which autoionization is important if the angular distribution of autoionized
electrons is different from that for directly ionized electrons. Again, such information would
supplement that available from Franck—Condon factors (Natalis & Collin 1968).

For atoms, the theory of the angular distribution of photoelectrons is well established (Bethe &
Salpeter 1957). Recent calculations (Cooper & Zare 1968) for electrons photodetached from
H™, C7, and O™ are in approximate agreement with experiment (Hall & Siegel 1968).

The theory of the angular distribution for molecules is more complex than that for light atoms,
since:

(i) The molecular orbitals are not eigenfunctions of the orbital angular momentum operator /2,
due to the absence of spherical symmetry.
(ii) The bound orbital, from which the photoelectron is ejected, is quantized on the molecular
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axis, while the continuum function of the ejected electron is more readily referred to space-fixed
axes, and

(iii) There may be transfer of angular momentum between electronic and rotational motion,
as considered by Cohen & Fano (1966).
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148 A.D. BUCKINGHAM, B.J. ORR AND J. M. SICHEL

This paper describes a general theory for diatomic molecules. Very recently another paper
on this problem has been published (Tully, Berry & Dalton 1968), and its treatment is similar to
ours in some respects. However, our theory treats molecular rotation explicitly, so that it is
applicable to transitions between individual rotational levels; different angular distributions are
found according to whether rotational structure is resolved or not. In this connexion we note
that Turner (1968¢) suggested that rotational fine structure in molecular photoelectron spectro-
scopy should be resolved in favourable cases. In addition, we employ a single-centre expansion
for the bound orbital from which the photoelectron is ejected; this permits the reduction of the
problem to purely radial integrals, and the expression of the result in a form analogous to that
obtained for atoms by Cooper & Zare (1968).

2. GENERAL CONSIDERATIONS

Consider the photoionization of a diatomic molecule by plane-polarized light of frequency v
resulting in the ejection of a photoelectron into an element of solid angle df2. The kinetic energy
of the photoelectron is £ = kv — I, where [ is an ionization potential of the molecule. We assume
that the energy of the incident photon is such that autoionization processes ejecting electrons
with kinetic energy £ are negligible. If this is so, the predominant ionization mechanism in the
energy range used for molecular photoelectron spectroscopy is an electric-dipole transition from
an intial molecular state |g) to a final state | ;) = | fion; km, ) representing the bound state of the
ionized molecule and the continuum state of a photoelectron having momentum 7%k in the
asymptotic limit of large 7, and spin m, quantized along the space-fixed z axis. We neglect the
electric quadrupole, magnetic dipole and two-photon processes considered by Tully et al. (1968);
these are expected to be negligible under the normal experimental conditions of molecular
photoelectron spectroscopy.

For an isotropic gas, the differential cross-section for ejection of an electron with energy E
into the element of solid angle d£2 is then (cf. Bethe & Salpeter 1957)

8132y
Op=—1 DN/ ADIEAT LN (1)
g degenerate 2
states

where z is the direction of polarization of the incident light and #, the total statistical weight of
the initial state. The inner summation extends over all electrons ¢ and the outer over all degenerate
states of both molecule and ion, as well as over the photoelectron spin m,.

The photoelectron may be considered to be removed from a molecular orbital quantized along
the molecular axis, and it is convenient to expand the continuum orbital | k) in terms of functions
quantized along this axis. The state | k) depends on the orientation of the molecule with respect
to the direction of k, but we make the simplifying assumption that | k) is an energy eigenfunction
for a central potential, since the dominant contribution to the transition matrix elements in (1)
is expected to come from regions far enough from the nucleus for this approximation to be
reasonable. Then | k) is axially symmetric about the direction of observation and can be expanded
in partial waves (Bethe & Salpeter 1957; Messiah 1961):

| = (4m) L SN 2A+ 1) Ry(r) Pyl k), (2)

where r is the position vector of the photoelectron with respect to the centre of mass of the ion
(see §7), P, is a Legendre polynomial and R, a function of 7, normalized to §(£— E’) in atomic
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units. For photodetachment, the electron moves in a potential which falls off faster than r-1,
so that in the asymptotic limit of large r, equation (2) becomes a plane wave plus a spherical wave.
For photoionization from a neutral molecule or positive ion, the potential is asymptotically
coulombic, and both plane and spherical waves are modified by logarithmic phase factors, but
the asymptotic limit of the current density is unaltered (Messiah 1961). In either case, the R,(r)
must be chosen so that the spherical wave is ingoing, since | k) represents a final state (Breit &
Bethe 1954).

Using the spherical harmonic addition theorem to expand P, (k.r/kr) in terms of spherical
harmonics Y),, (0, #) quantized along the space-fixed z axis,

k) = ZiARy\(r) X Yiin, (6, @) Vimy (0, 6) = % |EAmy) Vi, (6, D), (3)
my N3

where (@, @) and (0, ¢) are the polar and azimuthal angles of k and r with respect to the z axis.
The states | EAm,) will be expanded later in terms of states quantized along the molecular axis.
The differential cross-section now becomes

81r3e¢2 _
Co= Y NN (fion; EAmym,| S 218> fions EAmym,| 5 2]8)* Vi, (6, D) Y, (6, D),
cn{l degenerate A, A, m) 7 i

(4)

since o, must be real. The product of spherical harmonics may be expanded as a sum of Legendre

states

polynomials to give

222y _
Oq = S (2L +1) Pr(cosO) Y (2A+1)F (24 +1)%
Cﬂg L MY

A AL
0 0 0

A AL . -
X 2 (- 1)“’""( O) { fron; EAmym,| 2 2;|8) { fron; EAmym, |3 z;| g>*,
m), %ﬁgg;erate my —m, ) [ (5)
Ji Je Js

are symmetrized vector-coupling coeflicients or 3;-
my my My

where quantities of the form (

symbols (Edmonds 1960).
It will be shown that (5) reduces to the form

To = Oota (47) 7 [1+ SF;(cos O)] (6)
for plane-polarized light. For unpolarized light
Og = Oyopa (41) 71 [1 - §BF(cos @x)]a (7)

where @, is measured from the axis of propagation of the incident light. The case of partial
polarization has been considered by Samson (1969).

For a given degree of polarization, the angular distribution of photoelectrons then depends
only on the anisotropy parameter . The form (6) is to be expected from general considerations
provided that, as we have assumed, all degenerate initial states are equally populated (Bethe &
Salpeter 1957; Cooper & Zare 1968). In order to reduce (5) to this form and evaluate 8, however,
the sums over degenerate states must be evaluated explicitly.

For an ‘oriented’ sample of molecules in which degenerate states are unequally populated,
as for example in a molecular beam experiment, a more complex angular distribution can be
obtained, as shown by Lin (1968) for the hydrogen atom. A more complex distribution may also
result due to electric quadrupole or magnetic dipole terms (Tully et al. 1968), but these should
be significant only at very high energies. We consider here only electric dipole transitions in an
isotropic gas, for which (6) is valid.

Either the molecule or the ion, or both, must have a net spin, so it is necessary to consider the
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way in which the spin angular momentum is coupled to the orbital and rotational angular
momenta. The two most common modes of coupling are Hund’s cases (a) and (4) (Herzberg
1950); case (b) is the simpler to treat here. We consider first transitions between individual rota-
tional levels when both the molecule and the ion can be described as Hund’s case () (§§3and 4),
and then average over rotational levels to obtain a result applicable if rotational structure is not
resolved (§5). We then consider the modification of the theory required if the molecule and/or
the ion conform to Hund’s case (a) (§6), and finally discuss briefly the radial integrals in the
theory (§7).

3. THEORY FOR TRANSITIONS BETWEEN INDIVIDUAL HuUND’s cAsE ()
ROTATIONAL LEVELS

In Hund’s case () the spin is weakly coupled to the resultant of the orbital (if any) and rota-
tional angular momenta, and the spin is quantized along a space-fixed axis. This description
is specially suitable for, say, 2% <- ¥ ionization.

We neglect small interactions due to spin-rotation coupling, as well as those involved in A-
type doubling (Herzberg 1950), and describe the molecular and ionic states by quantum numbers
n, 4, K, My, S, Mg, where A is the component of orbital angular momentum along the molecular
axis. K is the resultant of orbital and rotational angular momenta, § is the total spin, My and My
are the components of K and § along the space-fixed z axis, and 7 represents the other quantum
numbers required to define the state. The explicit form of (5) in this case is

21r262p A XL
; }
= ) @5y 5 LD Paleos®) B (2411 (3 41) (O A o)
AT L
my, —my O

X X (—1)*’"/\(

” 4
Mg, MY, M

) (0 A K" My ' MG; EXmym,| 3 z; |n" A" K" My 8" ML)
x (0 A'K' Mz §" M5 EXmym,| S z; |n" A" K" Mg S"MLY*,  (8)

where single primes refer to ionic, and double primes to molecular, quantum numbers,

The spin quantum numbers can be eliminated immediately from (8), since the sum over A, S
and m, is equivalent to a sum over the total spin S, of the final system (ion plus electron) and its
z component My. The sum over S;, My and Mg is (25" +1) times the term for which

Sp=Mp=Mg=25"
We now reduce the matrix elements in (8) to integrals over ‘internal’ coordinates, defined with
respect to axes fixed in the molecule. The continuum functions of the photoelectron are expanded:

| EAm,) = % |EXmY D 0, (), (9)

where | EAm;) is a state with orbital angular momentum component m; along the molecular axis,
o indicates the Euler angles describing the molecular orientation, and the ‘%- function’,

@%}\ m, (®), is a matrix element of the appropriate rotation operator (Edmonds 1960). Slmllarly,
the electric dipole operator for the 7th electron is

—ez; = — (§m)ber; Y19(05, ) = — (§m)Eor; 3 V20 (05, 67) Do (), (10)

where m’ is an angular momentum component along the molecular axis and 1, 05, ¢; are polar
coordinates referred to the molecular frame.
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The normalized eigenfunctions of a symmetric top also involve the 2-functions (Edmonds
1960), so that in the Born—-Oppenheimer approximation,

|nAK My SMgy = [(2K +1) /81214 [nAS M) D). (o) (11)

for both molecular and ionic states. The matrix elements in (8) now become, on dropping spin
quantum numbers,

(W A'K'Mic; EAmy |5 z; |n" A"K" Mg
_ [(2K”+ 1) (2K’+1)]%

% @t (m's EAm)) fdw DL (0) DL, (0) DRo() DD, (w),

48173 m:\ ,m’
(12)
where the ‘internal’ transition moment
dpge (m's EAmy) = (' A’ EAm | 37, Y100 (03, 65) |n"A"). (13)
1

The integral over orientation is evaluated by expanding the product of two of the 2 functions
and using the integral (Edmonds 1960) for a product of three & functions:

f do DI, (0) DW, (0) DiRe(0) D5}y (0)

= 8m2(— 1)4-Mz—m' 3 (274 1)
)

x( A1 j)(/\ 1 j\)(K’ J K”)( K’ J K" 14)
—my m —AA)\-my 0 m\-A" Ad A")\-Mig —m, Mg)’ (
where AAd = A’ —~A", and j is a dummy variable ranging from |A —1| to A+ 1. From (8), (12)
and (14) the differential cross-section is

3,2 2
0p = Y S (9L 1+ 1) Py(cos®) 3 (2+1) (2A+ 1)} (2X+ 1)%(/1 AL
3 I W, 0 0 0
x QUK (J) A (X)) Ap(EXj)* Z (= 1)~

A
A A L A 1 g A 1 g
x (m,\ —m) 0) ( —my 0 m,\) ( —my 0 m;\) > (19)

where we have made use of an orthogonality relation for 3j-symbols and defined

QUE.(j) = (2K +1)(_A, 2 /1") (16)
4 . Voo , A 1 J
n'A — — —m n”ll,, ’.
and AABN) = % (=177 an's B (_m,A A /1)' (17)

The factor @4.%.(j) contains the dependence on rotational quantum numbers. It will be shown
later (§6) that only this factor depends on the assumption of Hund’s case (4) states, so we shall
write it simply as @( j) and evaluate it for Hund’s case (a) states later.

The summation over m, may be evaluated using the identity (Edmonds 1960)

> ( - l)ll+lz4’ls+/‘1+ﬂ2+/‘a (‘]1 12 13 ) ( ll ‘]‘2 l3 ) ( ll lz ja )

s foas fhs my Mo —H3/ \—H1 My HU3] \P1 —HUs Mg

A Y N
_(ml mq ma){ll ly la}’ (18)
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where the expression in curly brackets is a 6j-symbol. The differential cross-section then becomes

3,2
7= TR CLen Beond) (g o) SEA+DIET 0I5 § o)

LA

< S(=17 1)U 7 3] 4ME EN) N (9)

Itisnow clear that the differential cross-section has the form of (6), since the 3j-symbol (f; (1) (1))
is non-zero only for L = 0, 2. Evaluation of all non-zero 3j- and 6j-symbols (Edmonds 1960)

leads to 4,9, © A+l
Crom = o 3 S (2+1) QU |ABA(EN) Y (20)
o2 9 A=oj=Ix-1
oo I Q) | A4 (EAX+1) |2 = 2+ 1) Q)| A3 (EAN) 2

+(A+1) QA= 1) |A¥A(EAX = 1)[>— 6[A(A+ 1) ]}
x Q(A) Re{Ar 4, (EX— 1) A%4.(EA+10)*}].  (21)

PTiotal =

4, EVALUATION OF INTERNAL MATRIX ELEMENTS IN ORBITAL APPROXIMATION

We now consider an orbital picture of a vertical ionization process, and assume first of all
that the molecular electronic wave function is given by the Hartree-Fock approximation as a
linear combination of the minimum number of Slater determinants consistent with the assumed
spin quantum numbers. For a ground-state multiplet, the state with Mg = S” is a single deter-
minant with 25” odd electrons. We also assume that the photoelectron is removed from a definite
orbital, leaving an ion in which the other orbitals are not affected by the ionization process.
This is Koopmans’s (1933) approximation, which leads to the identity of vertical ionization
potentials and Hartree—Fock orbital energies.

The integral over electronic coordinates in the internal matrix elements defined by (13) is then
an integral of a sum of one-electron operators taken between determinantal wavefunctions
differing in one spin-orbital only, and may be reduced to a one-electron integral (Parr 1964;

Slater 1960). We find that
av(m'y EAm) = ik f At e Ve (0, &), —p (22)

where the first orbital is a continuum function, and the second with angular momentum com-
ponent — A/ along the molecular axis is the orbital from which the photoelectron is ejected.
The factor ¢vipis a vibrational overlap integral (¢2;, is a Franck-Condon factor) due tointegration
over the internuclear coordinate, and £g;,, depends on §” and " and allows for the fact that the
final state of the ionized system with M7 = S, = $” is not in general a single Slater determinant.
To reduce the result to radial integrals, the bound orbital in (22) may be expanded in terms
of central field functions (cf. §7):
Uy, —Aa = l=|zA:/1I Cannl<r) Yl, —AA(‘9,) ¢,)s (23)
where R, (r) is normalized. The continuum function in (22) is a central-field orbital in our
approximation, and evaluation of the angular integrals leads to

322+ 1)7F i o s
_4;*] QVibkspin l=lZAAl Cannl (2l+ 1)

A1 LN 1
X<-—mg m’ _AA>(0 0 0)’ (24)

avd.(m'y EAmy) = i—2(— 1)“’")\[
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where we have defined a radial transition integral

FEA — f 2 dr RE(r) 1R, (r). (25)
0

Substituting (24) into (17) and inserting the result into (20), (21) leads to the total cross-
section

3,242 12
81r VQVibkspin
Ototal = —— . —

@I+ D) QW |Cul L F 12+ (+1) [Fapt %], (26)

@
3¢ 1=124]
and the anisotropy parameter

g =

S 1Cul? QU) (20+1)=2[1(1 = 1) |12 4 (14 1) (14 2) | B2 — 61(1+ 1) Re (F -1 P 1417)]
1=|A4]

» [Cul? Q) (20+ 1) F 224 (U4 1) | Fap 2]
1=]A4a]

(27)
For Hund’s case (), the factor Q(!) is given by (16).

5. AVERAGING OVER ROTATIONAL LEVELS

The above calculation refers to transitions between individual rotational levels. This is essential
for the interpretation of experiments in which rotational structure is resolved. In such experiments
the terms corresponding to different / values could be separated. Also, (26) can be used as the
starting-point for a theory of the shape of rotational profiles. However, rotational fine structure
has not yet been resolved in molecular photoelectron spectroscopy, although this should become
possible (Turner 1968¢). To make the present theory directly applicable to experiments in which
rotational structure is not resolved, it is necessary to average the differential cross-section
over rotational levels of the molecule, and sum over the levels of the ion. The result is
the same as that obtained by evaluating the cross-section for a particular direction of the
molecular axis, and then averaging over all possible directions, as in the work of Tully ef al.
(1968).

We now denote the differential cross-section relating to individual rotational levels by
0o(K'<K"). Then for an initial Boltzmann population, the differential cross-section for
photoionization from all rotational levels of a given molecular vibrational state to all rotational

levels of a given ionic vibrational state is

To= (25" +1)Z7 3 (2K"+1)g(K) e FhT 5 oo(K' < K), (28)
.

”=A"

where Z is a partition function of the molecule, g(K") is a statistical weight to allow for nuclear
spin symmetry (= 1 for heteronuclear diatomics), and ot 1s the rotational energy of the initial

state.
The differential cross-section still has the form of (6), with the total cross-section and anisotropy

parameter given by (26) and (27) except that now

QU) = (3" + 1) Z0 3 QK+ g(K) ekt 3 QULE < K),  (20)

Gy
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with Q(I, K’ <- K") given by (16). The summation over K’ yields unity because of an orthogonality
relation for 3j-symbols, so @(/) = 1, and the anisotropy parameter becomes

B =

S, [Col? (214 1) [ 1) |[FE124 (1) (14 2) [FE2 - 610+ 1) Re (B -1 Ff1#1%]

l=|A4|

3 (Cl? (214 1) [ FE 2+ (D) |FE

=124 (30)

If the orbital from which the photoelectron is ejected were an angular momentum eigen-
function, so that only a single value of / is involved, (30) would reduce to a form equivalent to
that suitable for atoms (Cooper & Zare 1968). For molecules this would not be a good approxi-
mation in most cases. For example, Berkowitz et al. (1967) found a virtually isotropic distribution
of photoelectrons from the o, orbitals of N, and CO (the subscript g being an approximate
label for the latter), indicating that the non-spherical components of the orbital contribute
significantly to the anisotropy parameter. For N,, this has been confirmed by Samson (1970).

Tully et al. (1968) calculated the angular distribution of photoelectrons ejected from H,
(including only contributions from the p-component (/ = 1) of the continuum state. They have
neglected the interference terms which were found to be large for atoms (Cooper & Zare 1968);
this may be responsible for the fact that their calculated angular distribution is approximately
cos?@ (f = 2)in contrast to the experimental results for the o, orbitals of N, and CO (no results
have been published for H,).

6. THEORY FOR HUND’S CASE (a)

The theory for Hund’s case () states can be extended to Hund’s case (a) states; we obtain
different angular distributions for transitions between individual rotational levels, but the same
distribution as for case (b) if rotational structure is not resolved.

In Hund’s case (a) the spin is strongly coupled to the molecular axis. This description is
specially suitable for, say, 2II <-1X ionization. States can be described by quantum numbers n,
4,8, 2, 2, J and M, where 2'is the component of spin along the molecular axis, 2 = A+ 2, and
M is the component of J along the space-fixed z axis. The other quantum numbers have the
same meaning as for Hund’s case (). The rotational wave function of either the molecule or the
ion is now that of a symmetric top with half-integral angular momentum. Also, when trans-
forming the photoelectron state, the spin function as well as the orbital function must be trans-
formed to a new basis quantized on the molecular axis, since now the molecular and ionic spins
are quantized along this axis.

For Hund’s case (@), therefore, the matrix element analogous to that given by (12) is

<n’A/S’2’Q’JIM’; EAml\ mU l Z Zi ln/’A’/S/IZIIQI/J’/M/I>
2J”+1 2J,+1 1 1 AT T A ' ’ ’ noAn QN Oy
_ [(. 4;&3 )] S WA T Exmmi| Y (0 67) |0 475722

e a
m,my,m;

x [40 23 (0) 2, (0) D, () FR0) TF0). (31)

The internal matrix element is related to that defined in (13) by
(W A'S'E'Q s EAmymy| 31,1, (03, ¢7) |n" A"S"Z"Q"Y = andn(m'; EAmy) (8" Z'dm, | S'38"2"), (32)
@
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where the second factor is a vector-coupling coefficient. The integral over orientation has the
value

[ 40 932 0) 25, (0) 25, (0) Hpa(0) Do)

= sm(-vermem s @0 ( o A (i o o)
J

—my; m' —AA)\—m, O my
J ¥ J 3 X
X§(2X+1)(AA AX _AQ)(_m/1 — My m,\'l'ma)
Jox N T X J!
x(—!)’ AQ Q”)(—M' —my—m, M) o

where  is a dummy variable taking the values j + }. Evaluation of the differential cross-section
leads again to (15), but now with
Q) = @r+nes+n (s, A, S)
= X _AX -
JoF xS ox J”)2

where AY = 2" 2" and AQ = Q' — Q". The factor Q(j) contains the dependence on spin and
rotational quantum numbers. The derivation of (26) and (27) in the orbital approximation is
the same as that for Hund’s case (4), and the total cross-section and anisotropy parameter are
given by the same formulae, except that Q(!) is given by (34).

The average and sum over rotational levels, using (29) with X replaced by J throughout, leads
to:

. Y SI % Sll 2

o =es+n(y A S

This is independent of /, so the anisotropy parameter is the same as for Hund’s case () when
rotational structure is not resolved. It may be seen that in this case the angular distribution is the
same for all components of a spin multiplet.

If neither the molecule nor the ion is in a singlet state, as for NO and O,, it may be necessary
to treat one as Hund’s case (a) and the other as Hund’s case (4). The calculation is similar to that
when both are Hund’s case (a), except that two of the three spins in each matrix element are

(35)

now quantized along the space-fixed z axis so that in evaluating the matrix elements, it is best
to transform the third spin (that of the case (a) state) to a basis quantized along this axis.

We again obtain (26) and (27) but with a different Q (/). For transitions between individual
rotational levels, for (a) < (b)

, r x \ J X K"\
= ’ ~1 /
and for (4) < (a)

Q) = (2K'+1) % (2x+1) ( - i&./l ;" A 3(!2”)2 ( _KA’ A {Q" :(g”)z' (37)

After averaging over rotational levels, we obtain for (a) < (b)
QM) = 28"+ 1), (38)
and for (b) < (a) QU =1. (39)

Again these factors are independent of /, so equation (30) for the anisotropy parameter holds
in all cases when rotational structure is not resolved.
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7. RADIAL INTEGRALS

In order to evaluate the total ionization cross-section and anisotropy parameter, the radial
transition integrals are required. The R,(r) are found by resolution of the bound molecular
orbital, from which the photoelectron is ejected, into its angular momentum components, as in
(28). This resolution is known already for some molecules from single-centre molecular orbital
calculations (Bishop 1967; Hayes & Parr 1967).

Continuum eigenfunctions are not available for most molecules so that it is necessary to use
some approximate scheme. For photoionization from a neutral or positively charged molecule,
the potential of the ion is coulombic at large 7, so that the continuum function asymptotically
approaches a linear combination of regular and irregular coulomb functions of appropriate
energy (Messiah 1961). Close to the nuclei, the potential is not coulombic, but we expect the
coulomb approximation (Bates & Damgaard 1949; Seaton 1958; Peach 1967) to be reasonable
and the effect on the transition integral of departure from spherical symmetry to be small. Plane-
wave final states are not likely to be useful in this theory, since they lead to an incorrect angular
distribution even for atomic p-electrons in the high-energy limit (Bethe & Salpeter 1957).

For a heteronuclear diatomic a problem arises since the centre of the molecule is not uniquely
defined. The natural origin for the central-field functions in the present theory is the centre of
mass, since this is the only point in the molecule which remains fixed in space as the molecule
rotates. The continuum eigenfunction, however, is determined by the potential of the ion, and
therefore is most closely approximated by an energy eigenfunction for a central potential when
the origin is the centre of charge of the ion. We infer that the present theory is most accurate for
ionization to states whose centre of charge is close to the centre of mass.

For photodetachment (from negative ions) the potential of the final neutral molecule falls
off faster than a coulomb potential, so the continuum function asymptotically approaches a free-
particle wave function. The Robinson-Geltman (1967) potential has been found useful in
calculations of the angular distribution of electrons photodetached from atoms (Cooper & Zare
1968).

8. CONCLUSIONS

We have derived expressions for the anisotropy parameter of the angular distribution of
photoelectrons ejected from molecules, both for transitions between individual rotational levels
and when rotational structure is not resolved. Detailed calculations to determine the important
contributions to the anisotropy parameter for orbitals of various symmetries are now in progress.

The award to B. J. O. of an Overseas Scholarship by the Royal Commission for the Exhibition
of 1851 is gratefully acknowledged. J. M. S. remercie ’'Hydro-Québec de I’octroi d’une bourse
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